

BIM

- Building Information Modeling
 - Terme apparu vers 2010
 - Building au sens bâtiment dans un premier temps puis ouvrage au sens général
- Les prétentions du BIM
 - Notion de cycle de vie de l'ouvrage
 - Notion de collaboration des acteurs
 - Notion de « jumeau numérique » de l'ouvrage qui centralise les connaissances à son sujet
 - Importance de la pérennité de l'information

Enjeux sur la standardisation des informations

« Le BRGM fait du BIM »

- Le BRGM est un acteur de la standardisation des données sur les géosciences
- OGC Making location count.

- Membre actif de l'Open Geospatial Consortium (OGC) depuis 2001
- Co-leader de l'initiative OneGeology
- A contribué à l'établissement de la Directive Européenne INSPIRE
- Est impliqué dans les projets OpenScience : EPOS, EOSC, ...

- Le BRGM participe au projet national MINnD depuis 2014
 - Mais le BRGM n'est pas un spécialiste de la description des bâtiments / infrastructures

- L'intervention du BRGM porte sur
 - la standardisation des données sur les géosciences utiles à la description de l'environnement des infrastructures
 - o l'accessibilité de ces données depuis les outils du BIM
 - la connaissance des systèmes d'informations, les plateformes collaboratives, la standardisation, l'hébergement des données

MINnD GT1-5

- Sujet: Appliquer la philosophie de l'open BIM aux données géotechniques
- Besoin: Permettre aux acteurs du projet d'accéder aux données relatives à l'environnement de l'infrastructure pendant toute sa durée de vie
- Equipe : 40 personnes issus de 13 organisations
 - Recherche / organisme public

Constructeurs

Quelques données produites et/ou diffusées par le BRGM

Géothermie

Forages

GÉOTHERMIE

Observations géologiques

Modèles géologiques

GÉOLOGIE

Analyses / tests

LABORATOIRES & EXPÉRIMENTATION

Géosciences pour une Terre durable

DGR

DISN

STOCKAGE

GÉOLOGIQUE DU CO,

SYSTÈMES D'INFORMATION

Modèles hydrogéologiques

Pollution des sols

ENVIRONNEMENT & ÉCOTECHNOLOGIES

Niveau des eaux souterraines

Qualité des eaux souterraines

DEPA

EAU Qualité des eaux de surface

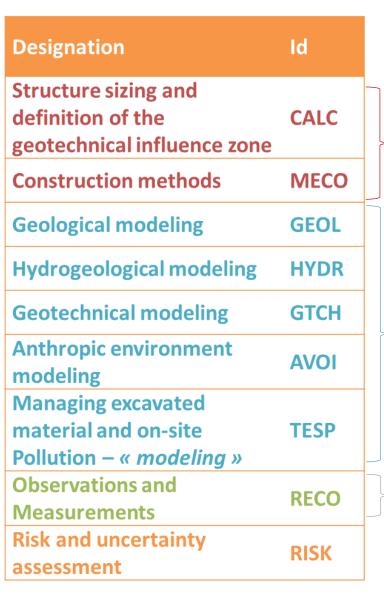
RISQUES

DRP

Mesures sismos

Cavités

Etudes de risques


APRÈS-MINE

Cartes de risques

Installations classées

BRGM SERVICE GÉOLOGIQUE NATIONAL WWW.BRGM.FR

Les missions géotechniques et la participation BRGM

Book C:
____ Draft
Conception Plan
(including RISK)

Book B: Environment Modeling (including uncertainties)

Book A: Factual data collection

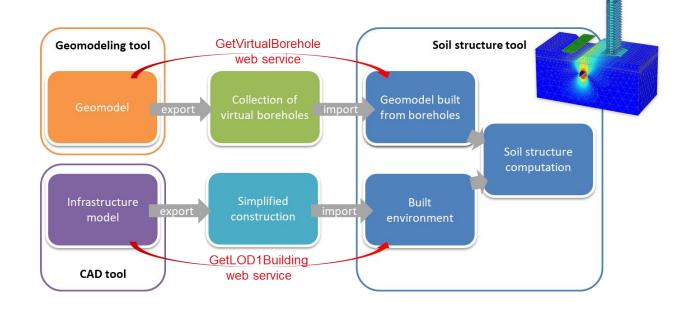
BEAUFILS Mickael DISN/ISR

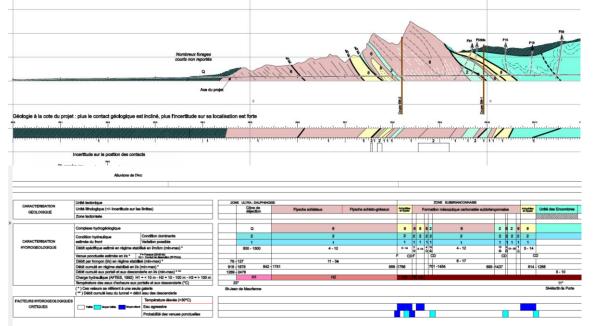
GRELLET Sylvain DISN/ISE

ROBIDA Francois DG/PROG

Les objectifs de notre action

- Faciliter le travail des géotechniciens
 - Eviter les multiples conversions / transferts de données et proposer des services à la place
- Fluidifier la chaîne de traitement
 - Faciliter la mise à jour des données et des résultats qui en découlent
- Construire une base unique de connaissances qui s'enrichit plutôt que des silos d'informations qui se cumulent
 - Capacité de tracer la genèse des interprétations (liens avec les autres données)
- Simplifier le partage et la citation des données
 - En leur associant des identifiants permanents
- Rendre la modélisation géo* 3D plus systématique
 - En facilitant la réutilisation des données existantes


Bien décrire les données collectées et produites pour le présent et le futur


- Description des données de reconnaissance
 - Description des observations et mesures en géotechnique
 - Valeur, incertitude, propriétés observées, méthodes d'obtention
 - Relations observations / interprétations
 - Description des supports d'observations
 - Forages, échantillons, point
- Description des données interprétées
 - Définition des objets modélisés
 - Unités géologiques, unités hydrogéologiques, unités géotechniques,
 - Failles, cavités,
 - Masses d'eau,
 - Définition des propriétés associées et de leur association
 - Attribut vs interprétation

Explorer de nouvelles façons de travailler

- Outils de co-visualisation / accès aux données BIM et geosciences
 - Prototype basé sur l'outil eveBIM du CSTB
- Services de création de coupes à la volée, forages virtuels
 - Pour calcul sol-structure
 - Pour production de livrable

Merci pour votre attention

• Me contacter: <u>m.beaufils@brgm.fr</u>

