

Structure et évolution tectonique de la Zone Interne Métamorphique (ZIM) des Pyrénées: exemple de la Nappe des Marbres

Financement : LABEX Voltaire

Maxime Ducoux

Encadrement : L. Jolivet (ISTO, directeur de these) C. Gumiaux (ISTO) F. Cagnard (BRGM) et T. Baudin (BRGM)

RGF Chantier Pyrénées

- Bande large de 500m à 10km selon les endroits
- Caractérisée par un métamorphisme de type HT-BP (600°C, <4 kbar)
- Affecte la série sédimentaire mésozoïque
- Ce métamorphisme est d'âge Crétacé : (les datations K-Ar, Ar-Ar, Rb-Sr → 110Ma et 85Ma).

La Zone Interne Métamorphique (ZIM)

22 mars 2017

Thermicité et répartition de la Zone Interne Métamorphique

400°C

pre-Albian Mesozoic cove

Albian-Cenomanian black flysch

- Comment se comportent les bassins extensifs lors de leur inversion pendant la compression ?
- Quelle est la position structurale de la Zone Interne Métamorphique et des marbres qui la constituent au sein de la chaine des Pyrénées ?
 - Quelles sont les directions et la quantité de raccourcissement ?
 - Quelle est l'origine de la répartition du métamorphisme ?
 - Quelles sont les directions et la quantité d'extension ?

La Zone Interne Métamorphique (ZIM)

Rgg Référentiel géologique de la france

Thermicité et répartition de la Zone Interne Métamorphique

- Clerc et al (2015): Première description complète des températures de la ZIM
- Les températures de la ZIM montrent une décroissance d'est en ouest
- Application de la thermométrie Raman sur 188 échantillons provenant de zones non contraintes
- Nouvelle cartographie de la thermicité sur l'ensemble de la ZIM

- Intérêt pour la région de la nappe des marbres
- Répartition du métamorphisme cartographiquement plus large
- Segment de la ZIM qui semble moins raccourci

Région de la Nappe des Marbres

Domaine occidental des Pyrénées

- A l'est du Bassin Basco-Cantabre
- Dans l'Arc plissé Basque

22 mars 2017

Géosciences pour une Terre durable

- Bassin composé de sédiments mésozoïques
- Encadrée par 2 massifs varisques (Alduides, Cinco Villas)
- Limitée au nord par la faille de Leitza et au sud le chevauchement d'Alarar
- Les contours cartographiques évoquent de la tectonique salifère

Modifié d'après les cartes géologiques de l'IGME au 50 000eme de Sunbilla et Tolosa

Région de la Nappe des Marbres

Configuration de la Dépression Intermédiaire

Upper Cretaceous fine grain sediments

Bedding trace

- Triassic pinkish limestone

Jurassic/Cretaceous limestone

Triassic dolerite (ophite)

- Brèche de base du flysch gris
- Clastes de socle carbonifère, carbonates (Trias inférieur et Mésozoïque)
- Discordance direct sur le socle

Déformations superposées

- Une phase de déformation extensive associée à une foliation ductile S_{0-1}
- Une phase de déformation compressive:
 - associée à une foliation S_2 plan axial de larges plis cylindriques
 - développement de failles crustales recoupant l'ensemble des structures

22 mars 2017

Géosciences pour une Terre durable

49

Déformation associée à la foliation ductile S₀₋₁ localisée le long de la Faille de Leitza

Déformation associée à la foliation ductile S₀₋₁ localisée le long de la Faille de Leitza

- Alternance de marnes et calcaires métamorphisés boudinés et étirés
- Foliation ductile parallèle a **S**₀
- La foliation S₀₋₁ est recoupé par la foliation tardive S₂

Déformation associée à la foliation ductile S₀₋₁ localisée le long de la Faille de Leitza

- Stratification S₀ complètement transposée par la S₁
- Déformation intense dans les sédiments antérifts

Déformations liées à la phase de compression pyrénéenne

- Développement d'une schistosité S₂ plan axial de large plis E-W
- Obliquité de la foliation par rapport à la Faille de Leitza
- Développement de plis métriques impliquant S₀₋₁ et S₀

Géosciences pour une Terre durable

Déformations liées à la phase de compression pyrénéenne

- Alternance de niveaux marneux et calcaires
- Caractérisée par le développement de plis E-W de la S₀
- Développement de la foliation S₂

sciences pour une Terre durable

Dépression Centrale: bassin de flysch gris turono-campanien

15

Déformations liées à la phase de compression pyrénéenne

Déformation le long de la faille de Leitza

- Succession de plis métriques coniques impliquant la S₀₋₁
- Orientation des axes: NW-SE

Déformations liées à la phase de compression pyrénéenne

Déformation le long de la faille de Leitza

- Développement de plis métriques à décamétriques
- Pli conique NW-SE
- Fort plongement de l'axe
- Flan du pli formé par la S₀₋₁

Déformations liées à la phase de compression pyrénéenne

Plis dysharmoniques décamétriques (carrière d'Almandoz)

Axe des plis :

Environ N70°E avec un plongement de 5-10° en moyenne

[5-10° → N70°E]

Evidence de déformation à la phase de compression pyrénéenne dans le socle Varisque

Déformation Varisque (plis isoclinaux couchés ~N20)

Déformation Alpine (plis ouverts droit ~N90)

- Evolution de la déformation vers le sud dans le massif de Cinco Villas
- Développement de plis droits associé à la compression pyrénéenne

- Failles normales dans le socle liées au rifting
- Niveau de décollement
- Failles crustales tardives recoupant l'ensemble des unités

Niveau de décollement à la base de la Nappe des Marbres

- Niveau de brèche localisé à l'interface Jurassique inférieur – Trias supérieur
- Epaisseur importante
- Brèche polygénique

Géosciences pour une Terre durable

Niveau de décollement à la base de la Nappe des Marbres

- Alternance de niveaux carbonaté et argileux
- Bréchification importante
- Clastes rubanés à contours franc ou diffus

Layered clasts

Sharp edge clasts

Rounded shaped white clasts with diffuse edge

Intensely / fine breccia

Recrystellized part

Failles crustales tardives : la faille de Leitza

- Décrite comme l'équivalent latéral de la FNP
- Présence de lambeaux de socle cataclasés
- Accompagnée de *lherzolite* et d'un grand cortège d'*ophite*
- Localise la déformation ductile et le métamorphisme HT
- Joue un rôle important dans le raccourcissement

• Discordance interne

250m 0m -250m

-750m

24

- Diapirs et mini-bassins
- Tectonique salifère précoce
- Evolution de la déformation dans le substratum varisque

Alduides

- Décollement à la base du bassin
- Importance de la Faille de Leitza

Métamorphisme de la Nappe des Marbres

Répartition des températures dans la région de la nappe des marbre

Thermométrie Raman appliquée sur 89 échantillons

25

Maximum de température affecte à la fois le Crétacé et le Jurassique 22

Métamorphisme de la Nappe des Marbres

Carte des températures dans la région de la nappe des marbres

Structure thermique de La Nappe des Marbres

Obliquité de la répartition du métamorphisme sur la structure

• Failles crustales tardives recoupent les isothrmes

Modèle Géodynamique

Phase **D1**: Extension – Cénomanien-Turonien

- Métamorphisme de HT localisé à l'aplomb de la remontée du manteau
- Structure précoce et localisation de l'exhumation à l'origine des gradient latéraux

Lithostratigraphic units

Phase **D2**: Tectonique Thin-skin – Turonien-Coniacien

- Niveaux de décollement dans le Trias supérieur (Keuper)
- Nappe des Marbres et Structure thermique déformée et déplacée vers le N-NE

Phase D3: Tectonique Thick-skin- Déformation impliquant le socle

22 mars 2017

ÉFÉRENTIEL

FRANCE

Conclusions

- *Région de la nappe des marbres* préservée d'une déformation compressive intense
- Affecté par des déformation superposées
- Thermicité Raman montre des température supérieure à 570°C identique à l'ensemble de la ZIM
- Gradients latéraux de température
- **Obliquité de la structure thermique** fortement liée à la tectonique salifère précoce
- Modèle géodynamique impliquant une évolution de la déformation
- Phase d'extension liée à de l'hyper-amincissement
- Phase de tectonique « Thin-skin » : la Nappe des marbres présente une vergence NE et est allochtone sur le socle hercynien
- Phase de tectonique « Thick-skin » : développement de failles crustales (e.g. Faille de Leitza)
- La Nappe des marbres illustre de manière plus claire que le reste de la ZIM, le modèle d'hyper-amincissement

Structure et évolution tectonique de la Zone Interne Métamorphique (ZIM) des Pyrénées

Merci pour votre attention

Les Pyrénées

- Collision intracontinentale
- Deux blocs continentaux : Ibérie et Eurasie
- Domaine plissé E-W sur plus de 1000 km

Structure globale des Pyrénées

5 ensembles structuraux :

- Bassin Aquitain
- Zone Nord-Pyrénéenne
- Zone Axiale
- Zone Sud-Pyrénéenne
- Bassin de l'Ebre

Clerc et al (2015)

Episode compressif

- Pas de subduction océanique anté-collision (Chevrot 2014,2015)
- Début de la compression dès la fin Crétacé
- Déformation compressive enregistrée dans des sédiments santoniens (86-83 Ma)
- La phase majeure de compression intervient à l'Eocène
- Associée à un soulèvement majeur de la chaîne et à la formation des bassins d'avant pays
- La Faille Nord Pyrénéenne (FNP) interprétée comme un accident majeur
- Classiquement la Zone Axiale est présentée comme chevauchante sur la ZNP

La Zone Interne Métamorphique (ZIM)

Extension albo-cénomanienne

Géosciences pour une Terre durable

- Extension favorisée par les structures tardi-hercyniennes
- Amorcée par l'effondrement post-orogénique et le rifting triasique
- Déformation ductile intense associée (foliation S0-S1) (Clerc et al, 2015)

La méthode RSCM (Raman Spectroscopy of Carbonaceous Materials)

Raman shift (cm-1)

Paramètre de quantification:

Géosciences pour une Terre durable

brqm

R2 (Rapport d'aire) = $\frac{D1}{G+D1+D2}$

Beyssac et al., JMG, 2002

 \Rightarrow Un géothermomètre RSCM indiquant le pic de température (T = - 445 R2 + 641)

- dans la gamme 330-650°C (Beyssac et al, 2002)
- dans la gamme 200-330°C (Lahfid et al, 2010)
- ± 50°C d'incertitude absolue sur la calibration,
- erreur standard pour 10 spectres voisine de 10-15°C.

Déformation liée à la phase de compression pyrénéenne

Structure Agly

Modèle Agly

Current structure - Miocene-Quaternary extension Bas-Agly syncline St Paul de Fenouillet basin S Axial Zone Agly

Uplift of Agly massif - early to middle Eocene S

Crustal thickening - Late Cretaceous to early Paleogene ?

Onset of the convergence - Late Santonian

St Paul de Fenouillet basin

Rifting - Albo-Cenomanian to early Santonian S Axial Zone Boucheville basin Agly

