

Cartographie géomorphologique, dynamique des versants et aléas gravitaires en vallée d'Ossau (Pyrénées, France).

Thématique : Pyrénées Alpines, évolution récente et dynamique des versants.

Du 06/02/17 au 21/07/17

Stagiaire : Gatien Douchet

<u>Référent RGF</u>: Frederic Lacquement (BRGM) <u>Encadrants :</u> Charles Aubourg (UPPA), Yannick Thiery (BRGM), Guy Sénéchal (UPPA) et Dominique Rousset (UPPA).

- 1. Introduction
- 2. Définitions
- 3. Contexte
- 4. Travaux effectués
- 5. Observations réalisées
- 6. Travaux prévus
- 7. Conclusion

Glissement de Pleysse, les Eaux-Bonnes, glissement rocheux déclenché en 1982 (3 m par jour) dans des schistes du paléozoïque. (B. Martins-Campinas, 2005).

- RSF : « Rock Slope Failure », Sackung. Processus gravitaire impactant tout un versant (volume > 10⁸ m³) (T. Lebourg et al, 2013; G. Crosta, 1996).
- Facteurs de prédispositions et de déclenchements :
 - Lithologie (schistes, calcaires), contraintes tectoniques, fractures et foliations métamorphiques (G. Crosta et al, 2013; F. Agliardi et al, 2000)
 - Topographie, glaciation : érosion des pentes et rebond glaciaire : décompression des roches
 - Chutes d'eaux importantes, fonte de la neige, circulation de l'eau, séismes et changements climatiques (D. Jarman et al, 2014; T. Lebourg et al, 2013 et 2002; B. Martins-Campinas, 2005; G. Crosta et al, 2013).

Carte des séismes de 2012, (source : OMP, RSSP).

Carte des glissements de terrains et chutes de blocs répertoriés par le RTM (source BD-RTM).

Ancienne vallée glaciaire.

Carte des aléas issus des PPR multirisques sur le secteur étudié.

Photographies aériennes : IGN

Glissements de terrain et chutes de blocs répertoriés par le RTM dans la vallée d'Ossau (Source BD-RTM).

Carte non exhaustive des glissements de terrain dans la vallée d'Ossau, (Fond de carte IGN), (Y. Thiery, 2017).

Secteur anciennement instable non investigué, ractivation possible ?	GANI /GL ?	Glissement(s) Anciens Inactifs/ Glissement(s) Latent(s) ? (non investigués)
Secteur très instable, glissement(s) actif(s)	GAc	Glissement(s) Actif(s)
Secteur cartographié en juillet 2015	GEB	Glissement des Eaux Bonnes

Carte géomorphologique de la zone cartographiée (Y. Thiery, 2015)

Carte géologique de la vallée d'Ossau.

Zone d'étude.

Glissement des Eaux-bonnes.

Source : IGN, BRGM.

Coupe géologique du massif des Cinq-Monts, 1^{er} phase de l'orogénèse Pyrénéenne : déversements des couches stratigraphiques vers le S et chevauchement. (C. Majestémenjoulas ,1968).

C. Majesté-menjoulas ,1968)

S

2^e étape (plis et fractures E-W) et 3^e étape (kinksbands et fractures N-S) de l'orogénèse Pyrénéenne (C. Majesté-menjoulas, 1968).

Formation des Cinqmonts (carbonifère).

Photo : C. Aubourg

Vallée d'Ossau, Sackung présumé de Laruns :

Fond de carte IGN

Vue Nord du glissement profond considéré : reconnaissance des déformations : Escarpements, contre-pente, fissures en suivant la topologie mise en place par (G. Crosta, 1996; F. Agliardi, 2000).

Orientation des plans de stratifications

N 052° - 53°

Orientation des plans de fractures

Localisation des mesures.

Images satellites : Google Earth

W

Escarpements observés :

Failles probables liées aux escarpements

Е

T. Lebourg et al, 2014

Glissement superficiel

Fissures observées, orientation N-S.

S

Fissures et fractures observées

- Objectifs :
 - Suite des mesures des fractures et des plans de stratification
 - Mesures géophysiques (électrique)
 - Carte géomorphologique 1/10 000.
 - Interférométrie radar ?
 - Un relevé topographique par GPS
 - Topographie LIDAR ?

Localisation de RSF potentiels (Y. Thiery)

Inventaire des RSF dans les Pyrénées orientales (D. Jarman et al, 2014)

Merci pour votre attention.

Références :

- Jarman, D., Calvet, M., Corominas, J., Delmas, M. and Gunnell, Y., 2014. Large-scale rock slope failures in the Eastern Pyrenees: identifying a sparse but significant population in paraglacial and parafluvial contexts. *Geografiska Annaler: Series A, Physical Geography, 96, 357–391.* doi:10.1111/geoa.12060
- T. Lebourg, S. Zerathe, R. Fabre, J. Giuliano, M. Vidal; A Late Holocene deep-seated landslide in the northern French Pyrenees, 2014.
- G.B. Crosta, P. Frattini, F. Agliardi, Deep seated gravitational slope deformations in the European Alps, 2013.
- F. Agliardi, G. Crosta, A. Zanchi, Structural constraints on deep-seated slope deformation kinematics, 2001
- T. Lebourg, R. Fabre, B. Clement, M. Frappa, High-mountain landslides in the Atlantic Pyrenees: their relationship with the geology and geomorphology, 2002.
- G. Crosta, Landslide, spreading, deep seated gravitational deformation: analysis, examples, problems and proposals, 1996.
- Bruno Martins-Campina. Le rôle des facteurs géologiques et mécaniques dans le déclenchement des instabilités gravitaires : exemple de deux glissements de terrain des Pyrénées Atlantiques (Vallée d'Ossau et Vallée d'Aspe). Planète et Univers [physics]. Université Sciences et Technologies - Bordeaux I, 2005.