

Chantier Pyrénées

- Gravity anomalies, lateral variation of flexural rigidity, and flexure of a rifted continental margin: the Aquitaine Basin
- Paul ANGRAND¹, Mary FORD¹, Anthony WATTS²
- 1: CRPG-CNRS Université de Lorraine, Nancy; 2: Oxford University, Oxford

Journées RGF 22-23 mars 2017 Chantier Pyrénées

Background Foreland basins

Flexural foreland basins that develop due to the load of the orogen Geometry depends on the rigidity of the plate (Te)

Background Foreland basins

Background Foreland basins

Background Geology of the Aquitaine Basin

- Pyrenean retro-foreland basin
- Syn-orogenic: Campanian to Miocene
- Asymmetric
- Structural inheritance (Apto-Cenomanian rifting: opening of the Bay of Biscay)
- Inherited faults

Angrand et al., in prep.

- Also post-orogenic events:
 - Opening of the Gulf of Lion
 - Pliocene uplift of the Massif Central

6

Geology of the Aquitaine Basin

Angrand et al., in prep.

Background

7

46°

45°

44°

43°

42°

The Aquitaine foreland basin

Foreland distribution

- Campanian to Miocene
- Data:
 - Isopach maps (BRGM et al., 1974)
 - PYRAMID cross-sections (Ford et al., 2016; Rougier et al., 2016; Espurt et al., in prep., Ford et al., in prep.; Grool et al., in prep.)
- Thickening southward (up to 5.5 km thick)
- Flexure of ~150 km wide and bulge of 20-50 km wide

Angrand et al., in prep.

The Aquitaine foreland basin

Foreland distribution

- Campanian to Miocene
- Data:
 - Isopach maps (BRGM et al., 1974)
 - PYRAMID cross-sections (Ford et al., 2016; Rougier et al., 2016; Espurt et al., in prep., Ford et al., in prep.; Grool et al., in prep.)
- Thickening southward (up to 5.5 km thick)
- Flexure of ~150 km wide and bulge of 20-50 km wide

Angrand et al., in prep.

Bouguer anomaly

Rgf Référentiel Géologique De la France

The Aquitaine foreland basin

Bouguer anomaly

11

ars 2017

Depth of top Paleozoic basement

- Observed top Paleozoic basement
- Data:
 - Isopach maps (BRGM et al., 1974)
 - PYRAMID cross-sections (Ford et al., 2016; Rougier et al., 2016; Espurt et al., in prep., Ford et al., in prep.; Grool et al., in prep.)
 - Seismic profiles (Serrano et al., 2006)

23 mars 2017

 Deepens southward (down to almost 10 km in the Adour sub-basin)

Angrand et al., in prep.

Depth of top Paleozoic basement

- Observed top Paleozoic basement
- Data:
 - Isopach maps (BRGM et al., 1974)
 - PYRAMID cross-sections (Ford et al., 2016; Rougier et al., 2016; Espurt et al., in prep., Ford et al., in prep.; Grool et al., in prep.)
 - Seismic profiles (Serrano et al., 2006)

23 mars 2017

 Deepens southward (down to almost 10 km in the Adour sub-basin)

Angrand et al., in prep.

Stretching of the plate

- Top of the crust: depth to top Paleozoic basement
- Base of the crust: depth to Moho, compilation of seismic data (Navarro et al., 2006)
- Initial crustal thickness: 33 km (from the platform)

 $\beta = \frac{initial \ crustal \ thickness}{final \ crustal \ thickness}$

UNIVERSITÉ DE LORRAINE

Angrand et al., in prep.

Post-rift thermal subsidence

- Thermal subsidence during the Pyrenean orogeny (since 84 Ma)
- Uniform Stretching Model (McKenzie, 1978)
- Sediment-filled basin (2500 kg.m⁻³)
- Pre-rift lithospheric thickness: 125 km
- Thermal constant of the lithosphere:50 Myr

Angrand et al., in prep.

Modelling the flexure How it works

Singularity

- Broken plate conditions
- Fixed physical parameters: Young's modulus: 100 Gpa Poisson's ratio: 0.25

Density of topographic load: 2700 kg.m⁻³ Density of sediments: 2500 kg.m⁻³ Density of mantle: 3200 kg.m⁻³ • Varying Te:

Te is constant or varies along the profile Te varies along strike

• We compare the calculated flexure to the observed base of foreland surface

Modelling the flexure

How it works

- Broken plate conditions
- Fixed physical parameters: Young's modulus: 100 Gpa Poisson's ratio: 0.25

Density of topographic load: 2700 kg.m⁻³ Density of sediments: 2500 kg.m⁻³ Density of mantle: 3200 kg.m⁻³

Varying Te:

Te is constant or varies along the profile Te varies along strike

• We compare the calculated flexure to the observed base of foreland surface

Results Flexure due to topography

Distance from plate break (km)

23 mars 2017

É Ne

Results Flexure due to topography

RgF RÉFÉRENTIEL Géologique E LA FRANCE Angrand et al., in prep.

Angrand et al., in prep.

Angrand et al., in prep.

Angrand et al., in prep.

Conclusions The Aquitaine Basin

- The Apto-Cenomanian rifting affected the evolution of the Aquitaine foreland basin
 - Strong segmentation of both basement and foreland
 - Post-rift thermal subsidence was active during the Pyrenean orogeny
 - Te decreases from centre to west and from north to south (from 7 to 25 km), consistent with variations of β

Conclusions Th

- The Aquitaine Basin
- The Apto-Cenomanian rifting affected the evolution of the Aquitaine foreland basin
 - Strong segmentation of both basement and foreland
 - Post-rift thermal subsidence was active during the Pyrenean orogeny
 - Te decreases from centre to west and from north to south (from 7 to 25 km), consistent with variations of β
- Gravity anomalies
 - The St Gaudens gravity anomaly corresponds to a mantle body that increases the flexure
 - What about the Labourd gravity anomaly?

Conclusions

- The Apto-Cenomanian rifting affected the evolution of the Aquitaine foreland basin
 - Strong segmentation of both basement and foreland
 - Post-rift thermal subsidence was active during the Pyrenean orogeny
 - Te decreases from centre to west and from north to south (from 7 to 25 km), consistent with variations of β
- Gravity anomalies
 - The St Gaudens gravity anomaly corresponds to a mantle body that increases the flexure
 - What about the Labourd gravity anomaly?
- Flexure of the Aquitaine Basin:
 - Pyrenean topography cannot explain the deflection of the European plate
 - The geometry of the foreland base of the central Aquitaine Basin is explained by combined loading (topographic and buried loads) and thermal subsidence
 - In the westernmost Aquitaine Basin, the foreland basin geometry is mainly controlled by thermal subsidence

Conclusions G

- The Apto-Cenomanian rifting affected the evolution of the Aquitaine foreland basin
 - Strong segmentation of both basement and foreland
 - Post-rift thermal subsidence was active during the Pyrenean orogeny
 - Te decreases from centre to west and from north to south (from 7 to 25 km), consistent with variations of β
- Gravity anomalies
 - The St Gaudens gravity anomaly corresponds to a mantle body that increases the flexure
 - What about the Labourd gravity anomaly?
- Flexure of the Aquitaine Basin:
 - Pyrenean topography cannot explain the deflection of the European plate
 - The geometry of the foreland base of the central Aquitaine Basin is explained by combined loading (topographic and buried loads) and thermal subsidence
 - In the westernmost Aquitaine Basin, the foreland basin geometry is mainly controlled by thermal subsidence
- Controlling factors of the flexure
 - Loading of a rifted crust affects the development of flexural foreland basin (if lithosphere is not thermally equilibrated)
 - In this case, thermal cooling can contribute significantly to subsidence
 - Qualitative correlation between β and Te: the lower the Te, the higher the β

Thanks for your attention

Flexural modelling

-

Flexural modelling

Ν

400

400

Ν

++ Thermal subsidence

Rgg Référentiel déologique de la france

39

++ Gravity (Bouguer anomaly)

Rgf RÉFÉRENTIEL GÉOLOGIQUE DE LA FRANCE

Naylor and Sinclair, 2008

DeCelles and Giles, 1996

Figure 4: Bouguer anomaly map of the UAE and surrounding areas. Illumination from the northeast. The blue outlines show location of oil and gas fields. See Figure 2 for names of fields. See Enclosure I for enlarged version.

Ali et al., 2014

++ Flexure

45

